Digital Circuits ECS 371

Dr. Prapun Suksompong

 prapun@sitit.tu.ac.th Lecture 22Office Hours:
BKD 3601-7
Monday 9:00-10:30, 1:30-3:30 Tuesday 10:30-11:30

Announcement

- Reading Assignment:
- Chapter 7: 7-1, 7-2, 7-4
- Chapter 8: 8-1, 8-2, 8-4, 8-5
- Chapter 9: 9-1 to 9-5
- HW8 is posted on the web
- Due date: Next Wednesday (Sep 9)

Example: Arbitrary Counting Sequence

Example: Arbitrary Counting Sequence

Example: Check Answer

Example: Comparison

Cascaded Counters

- Cascading is a method of achieving higher-modulus counters.
- In essence, cascading means that the last-stage output of one counter drives the input of the next counter.
- Asynchronous Cascading:

Modulus-4 counter

Modulus-8counter

Synchronous Cascading

- Use

1. count enable (CTEN)

- On some devices, CTEN is labeled as G

2. terminal count (TC)

- Same as ripple clock output (RCO) on some IC counters
- The next counter is enabled only when the TC of the previous stage is reached.

Example:

Determine the overall modulus of the following cascaded counters:

The over all modulus is $8 \times 12 \times 6=1536$

The over all modulus is

Application: Digital Clock

Register

- Flip-flops are used in a variety of application circuits, the most common among these being
- counting circuits and
- frequency division and
- data storage and transfer (data movement) circuits.
- Counters and registers
- Belong to the category of MSI sequential logic circuits.
- Similar architecture: both comprise a cascaded arrangement of more than one FFs.
- Both constitute very important building blocks of sequential logic

Register

- A register, unlike a counter, has no specified sequence of states, except in certain very specialized applications.
- Application
- Counters are mainly used in counting applications, where they either measure the time interval between two unknown time instants or measure the frequency of a given signal.
- Registers are primarily used for the temporary storage of data present at the output of a digital circuit before they are fed to another digital circuit.

Register and Shift Register

- The storage capacity of a register is the total number of bits (1 s and 0 s) of digital data it can retain.
- Since each FF can store one bit of data, the storage capacity of the shift register equals the number of FFs used.
- The shift capability of a register permits the movement of data from stage to stage within the register or into or out of the register upon application of clock pulses.

Shift Register

- A shift register is an arrangement of flip-flops with important applications in storage and movement of data.
- Some basic data movements are illustrated here.

Serial in/shift right/serial out SISO

Serial in/shift left/serial out SISO

Data in

Parallel in/serial out PISO

- The basic building block in all shift registers is the FF, mainly

Although in many of the commercial shift register ICs their internal circuit diagram might indicate the use of S-R FFs, a careful examination will reveal that these SR FFs have been wired as D FFs only.

Serial-in/Serial out Shift Register

- Accept data serially: one bit at a time on a single line.
- Each clock pulse will move an input bit to the next FF. For example, a 1 is shown as it moves across.
- Five-bit serial-in serial-out register.

Basic Application: SIPO

- An application of shift registers is conversion of serial data to parallel form.
- For example, assume the binary number 1101 is loaded sequentially, one bit at each clock pulse.

- After 4 clock pulses, the data is available at the parallel output.
- They can be stored for any length of time as long as the FFs have dc power.

SIPO Shift Register

(a)

(b)

PISO Shift Register

(a) Logic diagram

PIPO Shift Register

Latch as a Contact-Bounce Eliminator

- When the contacts of any mechanical switch bang together they rebound a bit before settling, causing bounce.
- Debouncing is the process of removing the bounces.

Switch Bounce Phenomenon

- Mechanical switch cannot be used as such to produce a clean voltage transition.
- The output makes several transitions between 0 and $+V$ volts for a few milliseconds owing to contact bounce before it finally settles at +V volts.
- Although this random behavior lasts only for a few milliseconds, it is unacceptable for many digital circuit applications.

(a)

Contact-Bounce Eliminator (2)

(a) Switch contact bounce

(b) Contact-bounce eliminator circuit

- Key Idea: The S-R latch is in "hold" mode for each bounce and hence the final output does not change.

